```
Monoclinic
C2/c
\(a=26.392(6) \AA\)
\(b=8.041\) (1) \(\AA\)
\(c=18.168\) (4) \(\AA\)
\(\beta=132.39(1)^{\circ}\)
\(V=2847.6(10) \AA^{3}\)
\(Z=4\)
\(D_{x}=1.415 \mathrm{Mg} \mathrm{m}^{-3}\)
\(D_{m}\) not measured
\(D_{x}=1.415 \mathrm{Mg} \mathrm{m}^{-3}\)
\(D_{m}\) not measured
```


Data collection

Siemens P4-RA diffractom-
eter
ω scans
Absorption correction:
ψ scan (SHELXTL-Plus;
Sheldrick, 1990)
$T_{\text {min }}=0.589, T_{\text {max }}=0.806$
3828 measured reflections
3113 independent reflections

Cell parameters from 18 reflections
$\theta=10-20^{\circ}$
$\mu=1.20 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$ Column
$0.71 \times 0.26 \times 0.18 \mathrm{~mm}$ Yellow

2861 reflections with $F>4 \sigma(F)$
$R_{\text {int }}=0.015$
$0_{\text {max }}=27.01^{\circ}$
$h=-33 \rightarrow 5$
$k=-10 \rightarrow 0$
$l=-19 \rightarrow 23$
1 standard reflection every 99 reflections intensity decay: none

Refinement

Refinement on F^{2}
$R(F)=0.0245$
$w R\left(F^{2}\right)=0.0646$
$S=1.091$
3113 reflections
148 parameters
H -atom parameters constrained
$\begin{aligned} & w= 1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0298 P)^{2}\right. \\ &+0.7817 P] \\ & \text { where } P=\left(F^{2}+2 F^{2}\right) / 3\end{aligned}$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.301 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.165 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL93
Extinction coefficient: 0.0029 (5)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Mn}-\mathrm{N} 2$	$2.251(1)$	$\mathrm{Mn}-\mathrm{S} 2^{\prime}$	$2.493(1)$
$\mathrm{Mn}-\mathrm{N} 1$	$2.370(1)$	$\mathrm{Mn}-\mathrm{S} 2$	$2.613(1)$
$\mathrm{Mn}-\mathrm{S} 1$	$2.409(1)$		
$\mathrm{N} 2-\mathrm{Mn}-\mathrm{N} 1$	$91.13(5)$	$\mathrm{N} 2-\mathrm{Mn}-\mathrm{S} 2$	$81.16(4)$
$\mathrm{N} 2-\mathrm{Mn}-\mathrm{S} 1$	$124.26(4)$	$\mathrm{N} 1-\mathrm{Mn}-\mathrm{S} 2$	$170.38(3)$
$\mathrm{N} 1-\mathrm{Mn}-\mathrm{S} 1$	$82.51(4)$	$\mathrm{S} 1-\mathrm{Mn}-\mathrm{S} 2$	$97.02(2)$
$\mathrm{N} 2-\mathrm{Mn}-\mathrm{S} 2^{1}$	$109.66(4)$	$\mathrm{S} 2^{1}-\mathrm{Mn}-\mathrm{S} 2$	$91.94(1)$
$\mathrm{N} 1-\mathrm{Mn}-\mathrm{S}^{1}$	$96.10(3)$	$\mathrm{Mn}^{1}-\mathrm{S} 2-\mathrm{Mn}$	$88.06(1)$
$\mathrm{S} 1-\mathrm{Mn}-\mathrm{S}^{1}$	$126.06(2)$		

Symmetry code: (i) $1-x,-y, 1-z$.
A crystal of the title compound was mounted on a glass capillary with silicone grease and placed quickly into the cold nitrogen stream of the cooling device of the goniometer. Data were corrected for Lorentz, polarization and absorption effects. The structure was solved by direct methods and subsequent difference Fourier synthesis. After anisotropic refinement of this model, H atoms were taken from the difference Fourier synthesis and recalculated to occupy idealized positions. One common isotropic displacement parameter was refined for the otherwise riding H atoms.

Data collection: P3 Diffractometer Control Program (Siemens, 1991). Cell refinement: P3 Diffractometer Control Program. Data reduction: XDISK in P3 Diffractometer Control Program. Program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics:

SHELXTL-Plus. Software used to prepare material for publication: SHELXL93.

Financial support from the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF), and the Fonds der Chemischen Industrie is gratefully acknowledged. JS thanks the Stiftung Stipendienfonds des Verbandes der Chemischen Industrie for a Kekulé fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1322). Services for accessing these data are described at the back of the journal.

References

Hauptmann, R., Kliss, R., Schneider, J. \& Henkel, G. (1998). Z. Anorg. Allg. Chem. 624, 1927-1936.
Hu, W.-J. \& Lippard, S. J. (1974). J. Am. Chem. Soc. 96, 2366-2372.
Osterloh, F. (1997). PhD thesis, University of Oldenburg, Germany.
Schneider, J., Hauptmann, R., Osterloh, F. \& Henkel, G. (1999). Acta Cryst. C55, 328-330.
Sheldrick, G. M. (1990). SHELXTL-Plus. Structure Determination Software Programs. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen. Germany.
Sicmens (1991). P3 Diffractometer Control Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1999). C55, 491-494

catena-Poly[[[diaqua(pyridine-2-carbox-amide- N^{1}, O)copper(II)]- μ-(sulfato- $\left.\left.O: O^{\prime}\right)\right]$ monohydrate]

Leslaw Sieroń and Maria Bukowska-Strzyżewska
Institute of General \& Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland. E-mail: mbs@ck-sg.p.lodz.pl
(Received 5 October 1998; accepted 20 November 1998)

Abstract

The new title $\mathrm{Cu}^{\text {II }}$ complex of pyridine-2-carboxamide (pca, $\left.\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right),\left\{\left[\mathrm{Cu}\left(\mathrm{SO}_{4}\right)(\mathrm{pca})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, has been synthesized and its crystal structure determined. It forms two crystallographically independent polymeric $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{pca})\left(\mathrm{SO}_{4}\right)\right]_{\infty}$ chains in which the sulfate ion adopts a bridging position between two Cu atoms, coordinating via two of its O atoms, with $\mathrm{Cu}-\mathrm{O}$ bond lengths in the range $2.318(1)-2.455(1) \AA$. The pca
ligand is coordinated through the ring N and amide O atoms, forming a five-membered chelate ring with $\mathrm{Cu}-\mathrm{N}$ distances of 2.010 (1) and 1.985 (1) \AA, and $\mathrm{Cu}-$ O distances of 1.964 (4) and 1.985 (1) \AA. The base of the elongated square-bipyramidal Cu^{11} coordination is completed by two $\mathrm{Cu}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ bonds with lengths in the range 1.961 (1)-1.975 (1) \AA. The polymeric chains are connected by two types of hydrogen bonds, namely, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds between amino N and sulfate O atoms, and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds between the uncoordinated $\mathrm{H}_{2} \mathrm{O}$ molecule and sulfate ions. The influence of the observed hydrogen bonds on the hard structural parameters, such as bond lengths and angles, is analysed.

Comment

This work is a continuation of our study of the preparation, properties and structure of copper(II) complexes with pyridine-2-carboxamide (Sieroń \& BukowskaStrzyżewska, 1997, 1998). Fig. 1 shows the repeat fragment of the polymeric chains formed in the crystals of the title compound, (I). In both chains, the Cu atoms

(I)
have a similar elongated octahedral environment with four short and two long bonds. The short bonds formed by the chelating pca ligand through the amide O and ring N atoms are $\mathrm{Cu}-\mathrm{O} 1.964$ (1), $\mathrm{Cu}^{\prime}-\mathrm{Ol}^{\prime} 1.985$ (1), $\mathrm{Cu}-\mathrm{N} 12.010(1)$ and $\mathrm{Cu}^{\prime}-\mathrm{N}^{\prime} 1.985(1) \AA$, and by the two equatorial cis- $\mathrm{H}_{2} \mathrm{O}$ molecules are $\mathrm{Cu}-\mathrm{O} 2$ $1.965(1), \mathrm{Cu}-\mathrm{O} 31.966(1), \mathrm{Cu}^{\prime}-\mathrm{O}^{\prime} \mathrm{C} 1.961$ (1) and $\mathrm{Cu}^{\prime}-\mathrm{O}^{\prime} 1.975(1) \AA$. The observed $\mathrm{Cu}-\mathrm{N}$ bonds are distinctly longer than similar bonds in more symmetrical complexes, e.g. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{pca})_{2}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2^{-}}\right.$ (pca) $\left.{ }_{2}\right]_{\mathrm{Br}_{2}}$ (Sieroń \& Bukowska-Strzyżewska, 1997), $\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{pca})_{2}\right]$ (Sieroń \& Bukowska-Strzyżewska, 1998) and $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{NO}_{3}\right)(\mathrm{pca})_{2}\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (Castro et al., 1990), where their average value is 1.967 (1) \AA. Observed $\mathrm{Cu}-\mathrm{O}$ (pca) bonds are also longer than the corresponding bonds in the above-cited perchlorato and nitrato complexes, where they are 1.937 (2) and $1.955(2) \AA$, respectively. In both $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\right.$ pca)$\left.\left(\mathrm{SO}_{4}\right)\right]_{\infty}$ chains, the sulfate $\left(\mathrm{SO}_{4}^{2-}\right)$ ions occupy the bridge positions between the $\mathrm{CuO}_{3} \mathrm{~N}$ basal planes, forming two long $\mathrm{Cu}-\mathrm{O}$ bonds ranging from 2.318 (1) to 2.455 (1) \AA. The geometrical shape of both crystallographically independent chains is similar, but not identical. The deformation of the square arrangement of four short $\mathrm{Cu}^{\mathrm{II}}$ bonds around the Cu and Cu^{\prime} atoms is dif-
ferent. Atoms $\mathrm{N1}^{\prime}, \mathrm{O1}^{\prime} \mathrm{O} 2^{\prime}$ and $\mathrm{O} 3^{\prime}$ form a strongly flattened tetrahedral coordination around the Cu^{\prime} atom. The average deviations of the trans-situated $\mathrm{Ol}^{\prime} / \mathrm{O}^{\prime}$ and $\mathrm{Nl}^{\prime} / \mathrm{O}^{\prime}$ atoms of the $\mathrm{Nl}^{\prime} / \mathrm{Ol}^{\prime} / \mathrm{O}^{\prime} / \mathrm{O}^{\prime}$ least-squares plane are 0.1161 (5) and -0.1161 (5) \AA, while the deviation of the central Cu^{\prime} atom is only 0.0087 (7) \AA. In the second chain, the $\mathrm{N} 1, \mathrm{O} 1, \mathrm{O} 2$ and O 3 atoms are nearly coplanar. Their deviations from the least-squares plane range from -0.0151 (6) to $0.0185(8) \AA$. The Cu atom [deviation from this plane: 0.0943 (7) A] is in the apical position of the flattened square pyramid. Also, the flatness of the chelate rings is different in both chains. The deviation of the Cu atom from the plane of the ideally coplanar $\mathrm{N} 1, \mathrm{O} 1, \mathrm{C} 1$ and C 2 atoms is only -0.15 (3) \AA, and of the Cu^{\prime} atom from the plane of the coplanar Nl^{\prime}, $\mathrm{O1}^{\prime}, \mathrm{Cl}^{\prime}$ and C^{\prime} atoms is 0.096 (3) \AA.

Fig. 1. A fragment of the polymeric $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{pca})\left(\mathrm{SO}_{4}\right)\right]_{\infty}$ chains. Displacement ellipsoids are drawn at the 50% probability level.

We suppose the influence of hydrogen bonds on the observed geometrical shape of both chains. The hydrogen bonds may be responsible for the elongation of the short Cu bonds, for the differentiation of $\mathrm{S}-\mathrm{O}$ bonds and for the different deformation of the $\mathrm{Cu}^{\mathrm{II}}$ coordination polyhedra of both polymeric chains. The geometry of the observed hydrogen bonds is given in Table 2. They may by divided into intra- and inter-chain bonds and into eight types, in agreement with the different types of connected groups: $\mathrm{N}-\mathrm{H}\left(\mathrm{NH}_{2}\right) \cdots \mathrm{O}($ pca $), \mathrm{N}-\mathrm{H}\left(\mathrm{NH}_{2}\right) \cdots \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$,
$\mathrm{N}-\mathrm{H}\left(\mathrm{NH}_{2}\right) \cdots \mathrm{O}\left(\mathrm{SO}_{4}\right), \mathrm{O}-\mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{O}(\mathrm{pca}), \mathrm{O}-\mathrm{H}-$ $\left(\mathrm{H}_{2} \mathrm{O}_{\text {coord }}\right) \cdots \mathrm{O}\left(\mathrm{SO}_{4}\right), \mathrm{O}-\mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}_{\text {coord }}\right) \cdots \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right), \mathrm{O}-$ $\mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and $\mathrm{O}-\mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{O}\left(\mathrm{SO}_{4}\right)$. All H atoms of the NH_{2} group and $\mathrm{H}_{2} \mathrm{O}$ molecules are involved in these bonds, but the donor groups of each chain form hydrogen bonds of different types. That is why their influence on the deformation of the bond lengths and angles is different in the individual chains. The observed $\mathrm{S}-\mathrm{O}$ bonds of the sulfate groups are distinctly differentiated [1.451 (1)-1.497 (1) A], which may be explained by the different number of hydrogen bonds formed by individual sulfate O atoms. The longest $\mathrm{S}-\mathrm{O}$ bond is formed by the O 7 atom, which is involved in three hydrogen bonds. The shortest $\mathrm{S}-\mathrm{O}$ bond is formed by the O 8 atom, which is involved in only one hydrogen bond; the copper-semi-coordinated $\mathrm{O5}^{\prime}$ atom is not involved in the hydrogen-bond system. Fig. 2 shows the molecular packing viewed along the x axis perpendicular to the $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{pca})\left(\mathrm{SO}_{4}\right)\right]_{\infty}$ polymeric chains. The uncoordinated $\mathrm{H}_{2} \mathrm{O}$ molecules coupled in pairs by hydrogen bonds are located between the two crystallographically independent chains, connecting these chains through hydrogen bonding.

Fig. 2. The molecular packing viewed along the x axis.

Experimental

The title crystals were grown from an aqueous solution of 2-pyridinecarbonitrile and copper(II) sulfate, indicating that the copper-assisted hydrolysis of 2-pyridinecarbonitrile to pyridine-2-carboxamide (Watanabe et al., 1973) had occurred. A pale-blue solution formed when $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ was added to an aqueous solution (50 ml) containing 2-pyridinecarbonitrile (1 mmol). After heating to boiling point, the solution became dark blue. After a few days, blue prismatic crystals of the title compound were obtained.

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)\right.$ -
$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=335.78$
Triclinic
$P \overline{1}$
$a=6.9446$ (6) \AA
$b=9.8415(7) \AA$
$c=17.0921(13) \AA$
$\alpha=94.102(6)^{\circ}$
$\beta=94.906(6)^{\circ}$
$\gamma=100.050(6)^{\circ}$
$V=1141.57(15) \AA^{3}$
$Z=4$
$D_{x}=1.954 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 3$ diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.349, T_{\text {max }}=0.754$
7546 measured reflections
6115 independent reflections
5524 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.066$
$S=1.034$
6115 reflections
422 parameters
All H -atom parameters
refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0345 P)^{2}\right.$
$+0.7550 P]$
where $P=\left(F_{\rho}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 48 reflections
$\theta=4.22-17.53^{\circ}$
$\mu=2.133 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.63 \times 0.15 \times 0.14 \mathrm{~mm}$ Blue
$R_{\text {int }}=0.011$
$\theta_{\text {max }}=29.06^{\circ}$
$h=-1 \rightarrow 9$
$k=-13 \rightarrow 13$
$l=-23 \rightarrow 23$
3 standard reflections every 100 reflections intensity decay: none

Table 1. Selected geometric parameters $\left.\left(\AA^{\circ}\right)^{\circ}\right)$

$\mathrm{Cu}-\mathrm{Ol}$	1.9639 (12)	$\mathrm{Cu}^{\prime}-\mathrm{Ol}^{\prime}$	1.9847 (12)
$\mathrm{Cu}-\mathrm{O} 2$	1.9649 (12)	$\mathrm{Cu}^{\prime}-\mathrm{O} 2^{\prime}$	1.9612 (13)
$\mathrm{Cu}-\mathrm{O} 3$	1.9655 (12)	$\mathrm{Cu}^{\prime}-\mathrm{O}^{\prime}{ }^{\prime}$	1.9750 (12)
$\mathrm{Cu}-\mathrm{OS}^{\prime}$	2.3179 (12)	$\mathrm{Cu}^{\prime}-\mathrm{O5}^{\prime}$	2.3928 (14)
$\mathrm{Cu}-\mathrm{O} 6$	2.4551 (13)	$\mathrm{Cu}^{\prime}-\mathrm{O6}^{\prime \prime}$	2.4299 (14)
$\mathrm{Cu}-\mathrm{N}$]	2.0090 (14)	$\mathrm{Cu}^{\prime}-\mathrm{N}^{\prime}{ }^{\prime}$	1.9845 (14)
S-05	1.4848 (13)	$\mathrm{S}^{\prime}-\mathrm{OS}^{\prime}$	1.4615 (14)
$\mathrm{S}-\mathrm{O6}$	1.4775 (13)	$\mathrm{S}^{\prime}-\mathrm{O6}^{\prime}$	1.4740 (13)
S-07	1.4970 (12)	$\mathrm{S}^{\prime}-07^{\prime}$	1.4818 (14)
S-08	1.4513 (13)	$\mathrm{S}^{\prime}-\mathrm{OB}^{\prime}$	1.4891 (13)
$\mathrm{O1}-\mathrm{Cu}-\mathrm{O} 2$	87.10 (5)	$\mathrm{Ol}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{O}^{\prime}{ }^{\prime}$	91.41 (5)
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{O} 3$	172.96 (6)	$\mathrm{Ol}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{O}^{\prime}$	170.87 (6)
$\mathrm{Ol}-\mathrm{Cu}-\mathrm{OS}^{1}$	98.51 (5)	$\mathrm{Ol}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{O5}^{\prime}$	96.22 (6)
$\mathrm{OI}-\mathrm{Cu}-\mathrm{O} 6$	88.86 (5)	$\mathrm{Ol}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{Ob}^{\prime \prime}$	88.05 (5)
$\mathrm{OI}-\mathrm{Cu}-\mathrm{Ni}$	81.17 (5)	$\mathrm{Ol}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{Nl}^{\prime}$	81.49 (5)
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 3$	95.38 (5)	$\mathrm{O} 2^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{O}^{\prime}{ }^{\prime}$	94.54 (5)
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O}^{\prime}$	89.01 (5)	$\mathrm{O} 2^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{OS}^{\prime}$	88.67 (5)
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 6$	84.88 (5)	$\mathrm{O} 2^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{O6}^{\prime \prime}$	92.17 (6)
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1$	167.67 (6)	$\mathrm{O} 2^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{N} 1^{\prime}$	170.21(6)

$\mathrm{O} 3-\mathrm{Cu}-\mathrm{O}^{1}$	$88.13(5)$	$\mathrm{O}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{O}^{\prime}$	$90.84(6)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{O} 6$	$84.81(5)$	$\mathrm{O}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{O6}^{\prime 1}$	$84.81(5)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{N} 1$	$95.84(6)$	$\mathrm{O}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{Nl}^{\prime}$	$93.36(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 6$	$170.18(4)$	$\mathrm{O5}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{O6}^{\prime \prime}$	$175.63(5)$
$\mathrm{O} 5^{\prime}-\mathrm{Cu}-\mathrm{N} 1$	$96.46(5)$	$\mathrm{O5}^{\prime}-\mathrm{Cu}^{\prime}-\mathrm{Nl}^{\prime}$	$85.42(5)$
$\mathrm{O} 6-\mathrm{Cu}-\mathrm{N} 1$	$91.05(5)$	$\mathrm{O6}^{\prime \prime}-\mathrm{Cu}^{\prime}-\mathrm{Nl}^{\prime}$	$94.31(6)$

Symmetry code: (i) $x-1, y, z$.

Table 2. Hydrogen-bonding geometry ($\left({ }^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	H \cdots A	D. \cdot A	$D-\mathrm{H} \cdots \cdot A$
$\mathrm{N} 2-\mathrm{H} 21 \cdots \mathrm{Ol}^{1}$	0.78 (3)	2.18 (3)	2.882 (2)	151 (3)
$\mathrm{N} 2-\mathrm{H} 22 \cdots \mathrm{O} 4^{\text {ii }}$	0.88 (3)	2.04 (3)	2.883 (2)	161 (2)
$\mathrm{O} 2-\mathrm{H} 23 \cdots \mathrm{O}$	0.79 (3)	1.97 (3)	2.755 (2)	172 (3)
O2-H24. . O5 $5^{\text {iii }}$	0.73 (3)	1.94 (3)	2.666 (2)	172 (3)
O3-H31...O4 $4^{\text {iv }}$	0.76 (3)	1.93 (3)	2.693 (2)	174 (3)
O3-H32 . OO7 $7^{\text {ini }}$	0.80 (3)	1.89 (3)	2.687 (2)	175 (2)
$\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O} 4^{\prime}$	0.77 (3)	1.90 (3)	2.669 (2)	177 (3)
O4-H41. $\mathrm{O6}^{\prime}$	0.72 (3)	2.04 (3)	2.754 (2)	170 (3)
$\mathrm{N} 2^{\prime}-\mathrm{H} 21^{\prime} \cdots \mathrm{O} 7^{\text {iii }}$	0.83 (3)	2.06 (3)	2.887 (2)	170 (3)
$\mathrm{N} 2^{\prime}-\mathrm{H} 22^{\prime} . . . \mathrm{O} 8^{\vee}$	0.82 (3)	1.99 (3)	2.763 (2)	158 (3)
$\mathrm{O} 2^{\prime}-\mathrm{H} 24^{\prime} \cdots . \mathrm{O}^{\prime}$	0.79 (3)	1.91 (3)	2.695 (2)	172 (3)
$\mathrm{O} 2^{\prime}-\mathrm{H} 23^{\prime} \cdots \mathrm{Or}^{\text {vi }}$	0.78 (3)	1.91 (3)	2.683 (2)	173 (3)
O^{\prime} - $\mathrm{H} 31^{\prime} \ldots . \mathrm{O} 7^{\text {vi }}$	0.73 (3)	1.95 (3)	2.670 (2)	168 (3)
$\mathrm{O3}^{\prime}-\mathrm{H} 32^{\prime} \cdots \mathrm{O}^{\text {/iv }}$	0.86 (3)	1.77 (3)	2.627 (2)	178 (3)
O4'-H41'... Ol^{\prime}	0.88 (3)	2.11 (3)	2.903 (2)	149 (3)
O4'-H42'. . O6	0.67 (3)	2.09 (4)	2.762 (2)	174 (4)

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $x-1, y-1, z$ (iii) $1-x, 1-$ $y, 1-z ;$ (iv) $x-1, y, z ;$ (v) $x, 1+y, z ;$ (vi) $1-x, 1-y,-z$.

The title structure was solved by direct methods and refined by full-matrix least-squares calculations. All non-H atoms were refined anisotropically. All H atoms were located from a difference synthesis and refined isotropically.

Data collection: Siemens P3 software. Cell refinement: Siemens P3 software. Data reduction: XDISK in SHELXTL/PC (Sheldrick, 1990). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a). Molecular graphics: $X P$ in SHELXTLIPC. Software used to prepare material for publication: SHELXL97

This work was supported by the Polish Committee of Scientific Research (grant No. 3 T09A 142 15).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1250). Services for accessing these data are described at the back of the journal.

References

Castro, I., Faus, J., Julve, M., Amigó, J. M., Sletten, J. \& Debaerdemaeker, T. (1990). J. Chem. Soc. Dalton Trans. pp. 891-897.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (I968). Acta Cṛist. A24, 351-359.
Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sieroń, L. \& Bukowska-Strzyżewska, M. (1997). Acta Cřist. C53. 296-298.
Sieroń, L. \& Bukowska-Strzyżewska, M. (1998). Acıa Cṛ̂st. C54, 322-324.
Watanabe, K., Komiya, S. \& Suzuki, S. (1973). Bull. Chem. Soc. Jpn. 46, 2792-2794.

